DOSSIER I.C.P.E. PIÈCE N° 4

RÉSUMÉ NON TECHNIQUE DE l'ÉTUDE DE DANGERS

Site éolien de Ploumagoar

SITE ÉOLIEN DE PLOUMAGOAR

CÔTES D'ARMOR (22)

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

PREAMBULE

Ce résumé non technique est destiné à l'information et à la consultation du public. Il s'agit d'une synthèse, qui ne peut se substituer à l'étude de dangers complète constituant la référence.

Le résumé non technique reprend la trame du guide technique pour la réalisation de l'étude de dangers des parcs éoliens et du résumé non technique, validés par l'Institut National de l'Environnement industriel et des RISques (INERIS) et le Syndicat des Energies Renouvelables (SER). Ce guide a par ailleurs été reconnu comme correspondant aux exigences de la réglementation en matière d'évaluation des risques par la Direction Générale de la Prévention des Risques.

SOMMAIRE

1.	DESCRIPTION SUCCINCTE DE L'INSTALLATION ET DE SON	
ENVI	RONNEMENT	3
1.1.	L'environnement humain de l'installation :	4
1.2.	L'environnement naturel de l'installation :	5
1.3.	L'environnement matériel de l'installation :	5
2	PRESENTATION DE LA METHODE D'ANALYSE DES RISQUES	6
		0
2.1.	L'analyse préliminaire des risques :	6
2.2.	L'analyse détaillée des risques :	7
2.3.	Cartographie des risques	.10
3.	CONCLUSION	.12

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

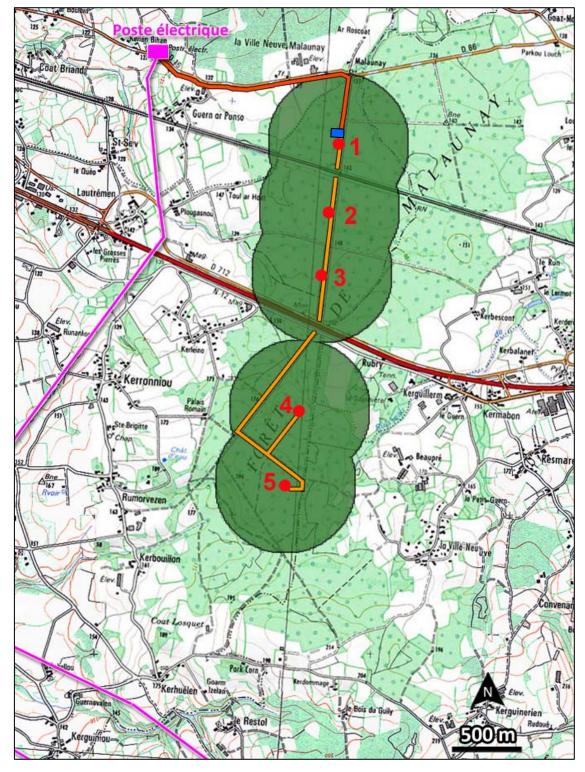
1. DESCRIPTION SUCCINCTE DE L'INSTALLATION ET DE SON ENVIRONNEMENT

Le parc éolien de Ploumagoar est composé de cinq éoliennes. Ces éoliennes sont fixées sur une fondation adaptée, accompagnée d'une aire stabilisée appelée « plateforme » ou « aire de grutage »

Un réseau de câbles électriques enterrés permet d'évacuer l'électricité produite par chaque éolienne vers le poste de livraison électrique.

Un poste de livraison électrique, concentre l'électricité produite par les éoliennes et organise son évacuation vers le réseau public d'électricité au travers du poste source local.

Un réseau de câbles enterrés permet d'évacuer l'électricité regroupée au poste de livraison vers le poste source de Saint Agathon.


Au sein du parc éolien se dessine un réseau de chemins d'accès pour l'acheminement des éoliennes.

Les éoliennes choisies dans le cadre du projet éolien de Ploumagoar, sont des éoliennes Vesta V90 ayant un mât de 105m et un rotor de 90 mètres de diamètre.

Ce projet est donc soumis au régime d'autorisation pour l'exploitation d'une installation classée pour la protection de l'environnement.

			Z
Lambert II Etendu	Х	Υ	(altitude au sol en mètre)
Eolienne n°1	201622	2408309	139
Eolienne n°2	201560	2407830	145
Eolienne n°3	201512	2407373	150
Eolienne n°4	201351	2406386	173
Eolienne n°5	201253	2405849	189
Poste de livraison (centre du PDL)	201624	2408353	139

Tableau 1 : Coordonnées GPS des éoliennes et du poste de livraison en Lambert II étendu

Carte 1 : Le raccordement électrique du projet de Ploumagoar

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

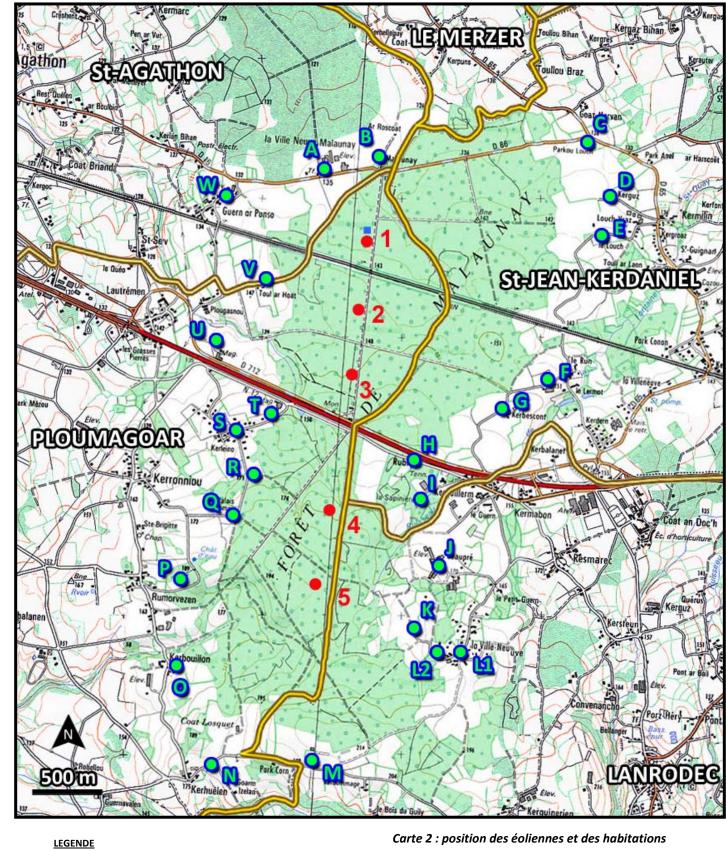
1.1. L'ENVIRONNEMENT HUMAIN DE L'INSTALLATION :

• Distance entre les éoliennes et les hameaux les plus proches :

				N° de l'éolienr	ne	
N°	Identification du	E1	E2	E3	E4	E5
	toponyme					
Α	La Ville Neuve Malaunay	620	1030	1460	2430	2970
В	Malaunay	600	1080	1550	2540	3090
С	Parkou Louch	1700	2010	2350	3210	3720
D	Kerguz	1750	1960	2230	3020	3500
E	Le Louch	1660	1800	2030	2770	3240
F	Le Run	1580	1400	1330	1740	2130
G	Kerbescont	1490	1200	1070	1420	1820
Н	Rubry	1560	1110	720	690	1140
1	La Sapinière	1840	1400	990	620	960
J	Beaupré	2300	1850	1440	820	860
K	Kériou	2740	2280	1830	980	700
L1	La Ville Neuve	3010	2560	2140	1370	1120
L2	La Ville Neuve	2950	2490	2060	1240	960
M	Park Corn	3730	3250	2790	1790	1250
N	Kerhuélen	3930	3450	3000	2030	1510
0	Kerbouillon	3390	2930	2510	1630	1220
P	Rumorvezen	2780	2340	1950	1200	1000
Q	Palais Romain	2150	1700	1300	680	780
R	Kerleino 1	1850	1400	1020	620	910
S	Kerleino 2	1660	1260	950	890	1240
T	Kerleino 3	1360	930	600	820	1290
U	Plougasnou (sud)	1310	1070	1010	1450	1880
V	Toul Ar Hoat	790	700	900	1670	2170
W	Guern Ar Punso	1080	1260	1560	2370	2860

Tableau 2 : Distances entre les hameaux les plus proches et les éoliennes

L'étude de dangers doit s'intéresser aux populations situées dans la zone sur laquelle porte l'étude de dangers, c'està-dire une zone de 500 mètres autour de l'implantation des éoliennes.


Dans le cadre de notre projet, toutes les habitations sont situées à plus de 500 mètres des éoliennes.

Distance entre les éoliennes et les hameaux les plus proches :

De même, elle s'intéresse plus largement, à la distance par rapport aux zones destinées à l'habitation c'est-à-dire aux zones urbanisables aux sens des documents d'urbanisme des communes situées aux alentours du parc éolien.

Pour le parc éolien de Ploumagoar, aucune zone destinée à l'habitation ne situe à moins de 500 mètres.

On note par ailleurs l'absence d'établissement recevant du public (ERP) et d'installation classée pour la protection de l'environnement (ICPE) dans un périmètre de 500 mètres par rapport à l'installation.

Éolienne

Poste de livraison

Limites communal

Zones d'habitation les plus proches

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

1.2. L'ENVIRONNEMENT NATUREL DE L'INSTALLATION :

L'activité orageuse d'une région est définie par son niveau kéraunique (Nk), c'est à dire le nombre de jours où l'on entend gronder le tonnerre. Le niveau kéraunique du département des Côtes d'Armor est évalué à 8 jours d'orage par an soit moins que la normale française.

La zone est sismiquement stable. Aucun séisme historique n'a été recensé dans la région. Des tremblements de terre mineurs ont pu être ressentis par le passé, mais le secteur n'est pas considéré comme une région sismique, c'est-à-dire une région où apparaissent des tremblements de terre d'intensité égale ou supérieure à VIII (MSK) responsables de destructions importantes et parfois de morts.

Il existe trois différents types d'aléas inondations qui peuvent êtres recensés :

L'aléa inondation par ruissellement et coulée de boue

259 communes sont concernées par l'aléa inondation par ruissellement et coulée de boue d'après la base de données GASPAR (Catastrophe Naturelle) du Ministère de l'Ecologie et du Développement du Territoire (Cf Carte suivante). La commune de Ploumagoar est concernée par un arrêté de catastrophe Naturelle en ce qui concerne l'aléa « inondation par ruissellement et coulée de boue ».

L'aléa inondation de plaine

300 communes sont concernées par l'aléa inondation de plaine d'après l'atlas des zones inondables des Côtes d'Armor et de la base de données GASPAR (Cf Carte suivante).

La commune de Ploumagoar est concernée par 3 arrêtés de catastrophe naturelle en ce qui concerne l'aléa « inondations de plaines ».

L'aléa inondation par submersion marine

31 communes sont concernées par l'aléa inondation par submersion marine d'après l'atlas des zones inondables des Côtes d'Armor et la base de données GASPAR (Catastrophe Naturelle). Nous n'avons pas intégré cette carte car toutes les communes concernées se trouvent sur le littoral (la commune concernée la plus proche de Ploumagoar est Plérin à environ 20 km). Nous avons également recensé les autres catastrophes naturelles qui ont eu lieu ces dernières décennies sur la commune.

Type de Catastrophe	Début le	Fin le	Arrêté du	Sorti au JO le
Tempête	15/10/1987	16/10/1987	22/10/1987	24/10/1987
Inondations et coulées de boue	15/01/1988	15/02/1988	07/04/1988	21/04/1988
Inondations et coulées de boue	17/01/1995	31/01/1995	06/02/1995	08/02/1995
Inondations, coulées de boue, glissements et chocs mécaniques liés à l'action des vagues		29/12/1999	29/12/1999	30/12/1999
Inondations et coulées de boue	06/01/2010	10/01/2010	09/04/2010	11/04/2010
Inondations et coulées de boue	28/02/2010	28/02/2010	30/03/2010	02/04/2010

Tableau 3 : Liste des catastrophes naturelles, commune de Ploumagoar

Source: prim.net

1.3. L'ENVIRONNEMENT MATÉRIEL DE L'INSTALLATION

La zone de l'étude de dangers est traversée d'ouest en est par la voie ferrée reliant Brest à Rennes (de 25 à 50 trains par jour¹) ainsi que par la route Nationale N12 (trafic d'environ 30 000 véhicules par jour entre Guingamp et Saint Brieuc²). Deux routes départementales passent également par la zone d'étude : la RD 86 (400 à 1100 véhicules par jour) et la RD 712 (500 à 4500 véhicules par jour)³.

Enfin, l'ensemble de la zone d'étude est desservi par des pistes d'exploitation destinées à l'activité sylvicole.

Type de voie de communication	Trafic journalier (nombre de véhicules par jour)	Voie structurante ⁴	Distance* à l'éolienne la plus proche
Voie ferrée Brest -Rennes	25 à 50	Oui	190m de E1
Route Nationale N12	30 000	Oui	345m de E3
Route départementale D86	400 à 1 100	Non	520m de E1
Route départementale D712	500 à 4500	Oui	330m de E3
Pistes d'exploitation	5 à 10	Non	5m

Tableau 4 : Le trafic journalier sur les voies de communication au sein de la zone de l'étude de dangers

- Transport d'électricité :

La ligne Haute Tension (trait rose) ayant son poste source à Saint Agathon (Kerlan Bihan) se situe à environ 1500 mètres du site éolien. Celle-ci passe parallèlement à la forêt de Malaunay selon un axe nord-sud.

- Réseaux d'alimentation en eau potable (captages AEP, zones de protection des captages) :

Les prises d'eau les plus proches sont situées sur la commune de Grâce. Il s'agit des captages dit du « Pont Caffin » et de « Kerhervé ». Le projet éolien ne s'inscrit pas dans les périmètres de protection de ces captages d'eau. L'eau potable sur le territoire du SCOT du Pays de Guingamp provient de 5 prises d'eaux superficielles et 20 captages d'eaux souterraines. D'après le code de la santé publique, les points de prélèvement d'eau destinés à la consommation humaine doivent avoir des périmètres de protection contre les pollutions accidentelles, ponctuelles ou locales.

Le projet ne se situe dans aucun périmètre de protection de captage d'eau

- Canalisations de transport :

Aucune canalisation transportant des fluides tels que le pétrole et le gaz n'est recensée à proximité immédiate du projet éolien. La commune de Ploumagoar n'est pas concernée par le transport de matières dangereuses (TDM) lié aux gazoducs. Une demande de servitude auprès de GRTGaz a été effectuée: le gestionnaire émet un avis **favorable** au projet éolien.

Aucun pipeline et gazoduc ne sera perturbé par l'implantation du projet éolien

¹ Source : Réseau Ferré de France

² Source : DIR OUEST – Données 2010

³ Source : Conseil Général des Côtes d'Armor

⁴ Une voie est structurante si son trafic journalier est supérieur à 2000 véhicules par jour ; on compte 100 véhicules pour un train – Source : *Trame type de l'étude de dangers - 2012*

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

2. Présentation de la méthode d'analyse des risques

2.1. L'ANALYSE PRÉLIMINAIRE DES RISQUES :

L'analyse des risques a pour objectif principal d'identifier les scénarios d'accident majeurs et les mesures de sécurité qui empêchent ces scénarios de se produire ou en limitent les effets. Cet objectif est atteint au moyen d'une identification de tous les scénarios d'accident potentiels pour une installation (ainsi que des mesures de sécurité) basée sur un questionnement systématique des causes et conséquences possibles des événements accidentels, ainsi que sur le retour d'expérience disponible.

Les scénarios d'accident sont ensuite hiérarchisés en fonction de leur intensité et de l'étendue possible de leurs conséquences. Cette hiérarchisation permet de « filtrer » les scénarios d'accident qui présentent des conséquences limitées et les scénarios d'accident majeurs – ces derniers pouvant avoir des conséquences sur les personnes.

2.1.1. LES AGRESSIONS EXTERNES LIÉES AUX ACTIVITÉS HUMAINES :

Le tableau ci-dessous synthétise les principales agressions externes liées aux activités humaines :

Infrastructure	Fonction	Événement redouté	Danger potentiel	Danger Périmètre		Distance par rapport au mât des éoliennes (m)			
			potentie		E1	E2	E3	E4	E5
Voies routières de circulation	Transport	Accident entraînant la sortie de voie d'un ou plusieurs véhicules	Énergie cinétique des véhicules et flux thermiques	200 m	190	>200	>200	>200	>200
Voie ferrée ⁵	Transport	Accident entrainant le déraillement	Énergie cinétique des véhicules et flux thermiques	170 m	190	285	735	1730	2270
Autres aérogénéra- teurs	Production d'électricité	Accident générant des projections d'éléments	Énergie cinétique des éléments projetés	500 m	480	460	460	>500	>500
Sylviculture	Exploitation sylvicole	Accident entraînant la sortie de voie d'un ou plusieurs véhicules	Énergie cinétique des véhicules et flux thermiques	200 m	5	5	5	5	5
Chasse	Loisir	Balle perdue sur les parois du mat ou sur les pales	Énergie cinétique de la balle	1000 m	5	5	5	5	5

Le tableau ci-dessous synthétise les principales agressions externes liées aux phénomènes naturels :

Agression externe	Intensité
Vents et tempête	L'intensité maximale des vents observée dans le secteur est d'environ 60 m/s. L'emplacement n'est pas compris dans une zone affectée par des cyclones tropicaux.
Foudre	Le niveau kéraunique du département des Côtes d'Armor est évalué à 10 jours d'orage par an soit moins que la normale française. Les aérogénérateurs choisis respectent la norme IEC 61 400-24 (Juin 2010)
Glissement de sols/ affaissement miniers	Le site est en dehors de zones inondables.

Selon la trame type de l'étude de dangers les agressions externes liées à des inondations, à des incendies de forêt ou de cultures ou à des séismes ne sont pas considérées dans ce tableau dans le sens où les dangers qu'elles pourraient entraîner sont largement inférieurs aux dommages causés par le phénomène naturel lui-même.

Les scénarios retenus pour l'analyse détaillée des risques sont :

- l'effondrement de l'éolienne ;
- La chute d'élément de l'éolienne ;
- La chute de glace;

RÉSUME NON-TECHNIQUE DE L'ÉTUDE DE DANGERS

- La projection de pale ou de fragments de pale ;
- La projection de glace.

^{2.1.2.} LES AGRESSIONS EXTERNES LIÉES AUX PHÉNOMÈNES NATURELS :

⁵ Le gestionnaire de la voie ferrée traversant le site éolien a été interrogé : son avis est consultable au chapitre Servitudes du document Annexes du dossier ICPE de Ploumagoar.

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

2.2. L'ANALYSE DÉTAILLÉE DES RISQUES :

L'étude détaillée des risques vise à caractériser les scénarios retenus à l'issue de l'analyse préliminaire des risques en termes de probabilité, cinétique, intensité et gravité. Son objectif est donc de préciser le risque généré par l'installation et d'évaluer les mesures de maîtrise des risques mises en œuvre. L'étude détaillée permet de vérifier l'acceptabilité des risques potentiels générés par l'installation.

2.2.1. LA CINÉTIQUE:

La cinétique d'un accident est la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

Selon l'article 8 de l'arrêté du 29 septembre 2005 [13], la cinétique peut être qualifiée de « lente » ou de « rapide ». Dans le cas d'une cinétique lente, les personnes ont le temps d'être mises à l'abri à la suite de l'intervention des services de secours. Dans le cas contraire, la cinétique est considérée comme rapide.

Dans le cadre d'une étude de dangers pour des aérogénérateurs, il est supposé, de manière prudente, que tous les accidents considérés ont une <u>cinétique rapide</u>. Ce paramètre ne sera donc pas détaillé à nouveau dans chacun des phénomènes redoutés étudiés par la suite.

2.2.2. L'INTENSITÉ:

L'intensité des effets des phénomènes dangereux est définie par rapport à des valeurs de référence exprimées sous forme de seuils d'effets toxiques, d'effets de surpression, d'effets thermiques et d'effets liés à l'impact d'un projectile, pour les hommes et les structures (article 9 de l'arrêté du 29 septembre 2005 [13]).

On constate que les scénarios retenus au terme de l'analyse préliminaire des risques pour les parcs éoliens sont des scénarios de projection (de glace ou de toute ou partie de pale), de chute d'éléments (glace ou toute ou partie de pale) ou d'effondrement de machine.

Or, les seuils d'effets proposés dans l'arrêté du 29 septembre 2005 [13] caractérisent des phénomènes dangereux dont l'intensité s'exerce dans toutes les directions autour de l'origine du phénomène, pour des effets de surpression, toxiques ou thermiques). Ces seuils ne sont donc pas adaptés aux accidents générés par les aérogénérateurs.

Dans le cas de scénarios de projection, l'annexe II de cet arrêté précise : « Compte tenu des connaissances limitées en matière de détermination et de modélisation des effets de projection, l'évaluation des effets de projection d'un phénomène dangereux nécessite, le cas échéant, une analyse, au cas par cas, justifiée par l'exploitant. Pour la délimitation des zones d'effets sur l'homme ou sur les structures des installations classées, il n'existe pas à l'heure actuelle de valeur de référence. Lorsqu'elle s'avère nécessaire, cette délimitation s'appuie sur une analyse au cas par cas proposée par l'exploitant ».

C'est pourquoi, pour chacun des événements accidentels retenus (chute d'éléments, chute de glace, effondrement et projection), deux valeurs de référence ont été retenues :

- 5% d'exposition : seuils d'exposition très forte

- 1% d'exposition : seuil d'exposition forte

Le degré d'exposition est défini comme le rapport entre la surface atteinte par un élément chutant ou projeté et la surface de la zone exposée à la chute ou à la projection.

Intensité	Degré d'exposition
exposition très forte	Supérieur à 5 %
exposition forte	Compris entre 1 % et 5 %
exposition modérée	Inférieur à 1 %

Les zones d'effets sont définies pour chaque événement accidentel comme la surface exposée à cet événement.

2.2.3. LA GRAVITÉ:

Par analogie aux niveaux de gravité retenus dans l'annexe III de l'arrêté du 29 septembre 2005, les seuils de gravité sont déterminés en fonction du nombre équivalent de personnes permanentes dans chacune des zones d'effet définies dans le paragraphe précédent.

Intensité Gravité	Zone d'effet d'un événement accidentel engendrant une exposition	Zone d'effet d'un événement accidentel engendrant une exposition	Zone d'effet d'un événement accidentel engendrant une exposition
	très forte	forte	modérée
« Désastreux »	Plus de 10 personnes exposées	Plus de 100 personnes exposées	Plus de 1000 personnes exposées
« Catastrophique »	Moins de 10 personnes	Entre 10 et 100 personnes	Entre 100 et 1000
« Catastropinque »	exposées	exposées	personnes exposées
« Important »	Au plus 1 personne exposée	Entre 1 et 10 personnes exposées	Entre 10 et 100 personnes exposées
« Sérieux » Aucune personne exposée		Au plus 1 personne exposée	Moins de 10 personnes exposées
« Modéré »	Pas de zone de létalité en dehors de l'établissement	Pas de zone de létalité en dehors de l'établissement	Présence humaine exposée inférieure à « une personne »

7

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

2.2.4. LA PROBABILITÉ:

L'annexe I de l'arrêté du 29 septembre 2005 définit les classes de probabilité qui doivent être utilisée dans les études de dangers pour caractériser les scénarios d'accident majeur :

Niveaux	Echelle qualitative	Echelle quantitative (probabilité annuelle)
A	Courant Se produit sur le site considéré et/ou peut se produire à plusieurs reprises pendant la durée de vie des installations, malgré d'éventuelles mesures correctives.	P >10 ⁻²
В	Probable S'est produit et/ou peut se produire pendant la durée de vie des installations.	10 ⁻³ < P ≤ 10 ⁻²
С	Improbable Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité.	$10^{-4} < P \le 10^{-3}$
D	Rare S'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité.	10 ⁻⁵ < P ≤ 10 ⁻⁴
E	Extrêmement rare Possible mais non rencontré au niveau mondial. N'est pas impossible au vu des connaissances actuelles.	≤10 ⁻⁵

Dans le cadre de l'étude de dangers des parcs éoliens, la probabilité de chaque événement accidentel identifié pour une éolienne est déterminée en fonction :

- de la bibliographie relative à l'évaluation des risques pour des éoliennes
- du retour d'expérience français
- des définitions qualitatives de l'arrêté du 29 Septembre 2005

Il convient de noter que la probabilité qui sera évaluée pour chaque scénario d'accident correspond à la probabilité qu'un événement redouté se produise sur l'éolienne (probabilité de départ) et non à la probabilité que cet événement produise un accident suite à la présence d'un véhicule ou d'une personne au point d'impact (probabilité d'atteinte). En effet, l'arrêté du 29 septembre 2005 impose une évaluation des probabilités de départ uniquement.

Cependant, on pourra rappeler que la probabilité qu'un accident sur une personne ou un bien se produise est très largement inférieure à la probabilité de départ de l'événement redouté.

La probabilité d'accident est en effet le produit de plusieurs probabilités :

P_{ERC} = probabilité que l'événement redouté central (défaillance) se produise = probabilité de départ

P_{orientation} = probabilité que l'éolienne soit orientée de manière à projeter un élément lors d'une défaillance dans la direction d'un point donné (en fonction des conditions de vent notamment)

P_{rotation} = probabilité que l'éolienne soit en rotation au moment où l'événement redouté se produit (en fonction de la vitesse du vent notamment)

P_{atteinte} = probabilité d'atteinte d'un point donné autour de l'éolienne (sachant que l'éolienne est orientée de manière à projeter un élément en direction de ce point et qu'elle est en rotation)

P_{présence} = probabilité de présence d'un enjeu donné au point d'impact sachant que l'élément est projeté en ce point donné

Dans le cadre des études de dangers des éoliennes, une approche majorante assimilant la probabilité d'accident (P_{accident}) à la probabilité de l'événement redouté central (P_{ERC}) a été retenue.

2.2.5. TABLEAU DE SYNTHÈSE DES SCÉNARIOS ÉTUDIÉS :

Le tableau suivant récapitule, pour chaque événement redouté central retenu, les paramètres de risques : la cinétique, l'intensité, la gravité et la probabilité. Les tableaux regrouperont les éoliennes qui ont le même profil de risque.

Scénario	Zone d'effet	Cinétique	Intensité	Probabilité	Gravité
Effondrement de l'éolienne	Disque dont le rayon correspond à une hauteur totale de la machine en bout de pale	Rapide	exposition forte	D (pour des éoliennes récentes)	Sérieux pour les éoliennes E1 à E5
Chute d'élément			exposition forte		Sérieux pour les
de l'éolienne	Zone de survol	Zone de survol Rapide exposition modérée		С	éoliennes E1 à E5
Chute de glace	Zone de survol	Rapide	exposition modérée	A sauf si les températures hivernales sont supérieures à 0°C	Modéré pour les éoliennes E1 à E5
					Important pour les éoliennes E1 et E2
Projection	500 m autour de l'éolienne	Rapide	exposition modérée	D (éoliennes récentes)	Catastrophique pour l'éolienne E3
					Sérieux pour les éoliennes E4 et E5
Projection de glace	1,5 x (H + 2R) autour de l'éolienne	Rapide	exposition modérée	B sauf si les températures hivernales sont supérieures à 0°C	Sérieux pour les éoliennes E1 à E5

L'ACCEPTABILITÉ DES RISQUES :

Enfin, la dernière étape de l'étude détaillée des risques consiste à rappeler l'acceptabilité des accidents potentiels pour chacun des phénomènes dangereux étudiés.

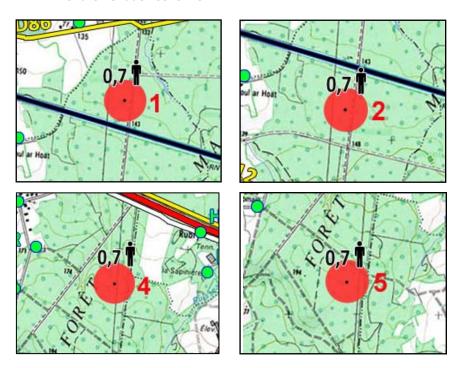
Les accidents potentiels identifiés sont de cinq sortes :

- Effondrement de l'éolienne ;
- Chute d'élément de l'éolienne ;
- Chute de glace;
- Projection de pale ou de fragment de pale ;
- Projection de glace.

Pour chaque accident potentiel, nous retenons l'événement le plus fort en termes de probabilité et de gravité. Cidessous vous trouverez donc la matrice de criticité, adaptée de la circulaire du 29 septembre 2005 reprise dans la circulaire du 10 mai 2010 mentionnée.

		Classe de Probabilité					
Conséquence	E	D	С	В	А		
Désastreux							
Catastrophique		Projection de pale E3					
Important		Projection de pale E1 et E2					
Sérieux		Effondrement de l'éolienne E1 à E5 Projection de pale E4 et E5	Chute d'élément de l'éolienne E1 à E5	Projection de glace E1 à E5			
Modéré					Chute de glace E1 à E5		

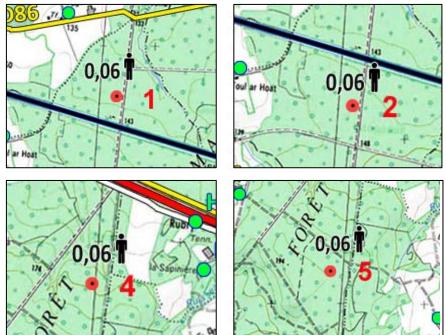
Légende de la matrice


Niveau de risque	Couleur	Acceptabilité
Risque très faible		acceptable
Risque faible		acceptable
Risque important		non acceptable

Enfin, d'après la matrice présentée ci-avant le risque associé à chaque événement étudié est <u>acceptable</u>. Nous pouvons alors conclure que l'acceptabilité du risque généré par le parc éolien de Ploumagoar est <u>acceptable</u>.

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS

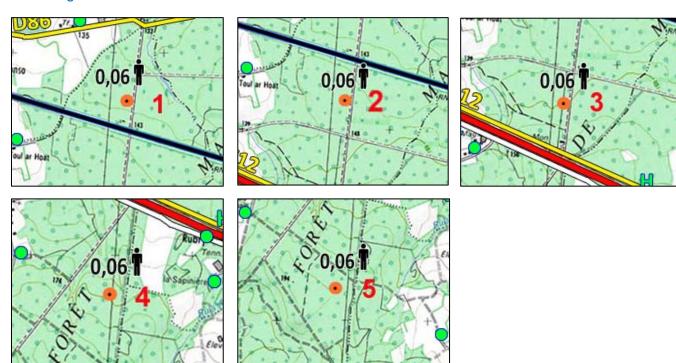
2.3. CARTOGRAPHIE DES RISQUES


- Effondrement de l'éolienne :

- Toutes les éoliennes sont concernées par ce scénario.
- Ce scénario a une cinétique rapide.
- La zone d'effet afférente à ce scénario est de 150 mètres (hauteur horstout) autour de chaque éolienne.
- Cela concerne le même nombre d'équivalents personnes permanentes (EPP) pour chaque éolienne (car il s'agit d'une zone de terrains aménagés mais peu fréquentés) et des niveaux de gravité équivalents (niveau sérieux).
- En termes d'intensité, l'exposition est forte.
- La probabilité d'occurrence de ce scénario est de D (Rare : «s'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité.»).
- La gravité de ce scénario est qualifiée de sérieuse.

Chute d'éléments de l'éolienne :

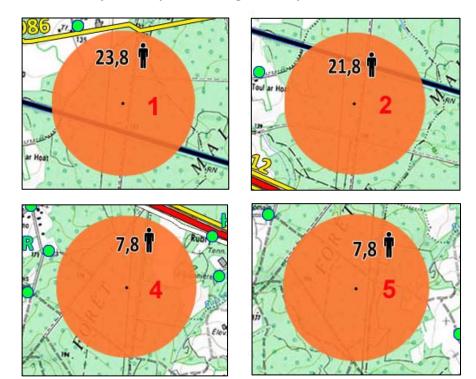
- Ce scénario concerne les cinq éoliennes de la même manière.
- Sa cinétique est rapide.
- La zone d'effet afférente à ce scénario est de 45 mètres (taille de pales des éoliennes choisies dans le cadre du projet) et concerne de fait 0,06 équivalents personnes permanentes.
- En termes d'intensité, l'exposition est forte.
- La probabilité d'occurrence de ce scénario est de C (Improbable: « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité.»).
- La gravité de ce scénario est qualifiée de sérieuse.

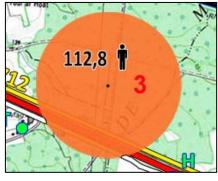


Légende

- Eolienne
- Exposition faible
- Exposition modérée
- Exposition forte
- Route nationale RN12
- Route départementale
- Voie ferrée
- Zones d'habitation les plus proches
- XXX P Equivalent personnes permanentes

RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS


- Chute de glace :


- Ce scénario concerne les cinq éoliennes de la même manière.
- Sa cinétique est rapide.
- La zone d'effet afférente à ce scénario est de 45 mètres (taille de pales des éoliennes choisies dans le cadre du projet) et concerne de fait 0,06 équivalents personnes permanentes.
- En termes d'intensité, l'exposition est modérée.
- La probabilité d'occurrence de ce scénario est de A (sauf si les températures hivernales sont supérieures à 0°C).
- La gravité de ce scénario est qualifiée de modérée.

Légende Eolienne Exposition faible Exposition modérée Exposition forte Route nationale RN12 Route départementale Voie ferrée Zones d'habitation les plus proches XXX Fequivalent personnes permanentes

Projection de pale ou de fragments de pale :

- Ce scénario a une cinétique rapide.
- La zone d'effet afférente à ce scénario est de 500 mètres et concerne de fait des équivalentes personnes permanentes différentes.
- En termes d'intensité, l'exposition est modérée.
- La probabilité d'occurrence de ce scénario est de D.
- La gravité de ce scénario est qualifiée de sérieuse pour E4 et E5, importante pour E1 et E2, catastrophique pour E3.

Légende

• Eolienne

Exposition faible

Exposition modérée

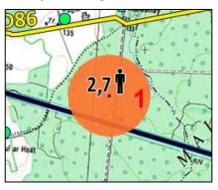
Exposition forte

Route nationale RN12

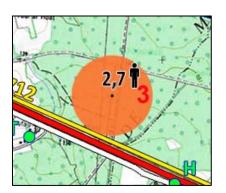
Route départementale

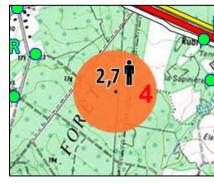
Voie ferrée

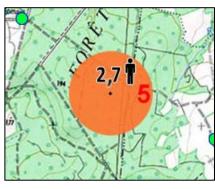
Zones d'habitation les


XXX Fequivalent personnes permanentes

7


RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS


RÉSUMÉ NON TECHNIQUE DE L'ÉTUDE DE DANGERS


- Projection de glace :

- Ce scénario a une cinétique rapide.
- Les cinq éoliennes sont concernées de la même manière puisque seules les personnes non abritées par leur véhicule sont comptabilisées pour le phénomène de projection de glace.
- La zone d'effet afférente à ce scénario est de 1,5 x (H+2R) soit 290 mètres environ autour de chaque éolienne.
- En termes d'intensité, l'exposition est modérée.
- La probabilité d'occurrence de ce scénario est de B (Probable : «S'est produit et/ou peut se produire pendant la durée de vie des installations..».
- Ici, conformément à la trame type de l'étude de dangers, seules les personnes non-abritées sont prises en compte.
- La gravité de ce scénario est qualifiée de sérieuse.

Légende Eolienne Exposition faible Exposition modérée Exposition forte Route nationale RN12 Route départementale Voie ferrée Zones d'habitation les plus proches XXX Equivalent personnes permanentes

Description des principales mesures d'amélioration permettant la réduction des risques

Aussi, pour chacun des phénomènes dangereux identifiés, des mesures de sécurité appropriées seront mises en place :

- Concernant l'effondrement de l'éolienne seront mises en place :

La fonction de sécurité n°9 : Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage par le biais de contrôles réguliers des fondations et des différentes pièces d'assemblages, de procédures qualités et attestation du contrôle technique (procédure permis de construire).

La fonction de sécurité n°10 : Prévenir les erreurs de maintenance en appliquant des procédures spécifiques.

La fonction de sécurité n°11 : Prévenir la dégradation de l'état des équipements par l'instauration de procédures de contrôle des équipements lors des maintenances planifiées et le suivi des données mesurées par les capteurs et sondes installées dans l'éolienne.

La fonction de sécurité n°12 : Prévenir la dégradation de l'état des équipements en adaptant la classe de l'éolienne au site et au régime de vents ainsi que la mise à l'arrêt de la machine par détection de vent fort accompagné d'un freinage aérodynamique commandé par le système de contrôle.

- Concernant la chute d'élément de l'éolienne seront mises en place :

La fonction de sécurité n°9 : Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage par le biais de contrôles réguliers des fondations et des différentes pièces d'assemblages, de procédures qualités et attestation du contrôle technique (procédure permis de construire).

La fonction de sécurité n°10 : Prévenir les erreurs de maintenance en appliquant des procédures spécifiques.

- Concernant la chute de glace sera mise en place :

La fonction de sécurité n°2 : Prévenir l'atteinte des personnes par la chute de glace par un panneautage en pied de machines et un éloignement des zones habitées et fréquentées.

- Concernant la projection de pale ou de fragments de pale seront mises en place :

La fonction de sécurité n°4 : Prévenir la survitesse par détection de survitesse et système de freinage.

La fonction de sécurité n°9 : Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage par le biais de contrôles réguliers des fondations et des différentes pièces d'assemblages, de procédures qualités et attestation du contrôle technique (procédure permis de construire).

La fonction de sécurité n°11 : Prévenir la dégradation de l'état des équipements par l'instauration de procédures de contrôle des équipements lors des maintenances planifiées et le suivi des données mesurées par les capteurs et sondes installées dans l'éolienne.

La fonction de sécurité n°12 : Prévenir la dégradation de l'état des équipements en adaptant la classe de l'éolienne au site et au régime de vents ainsi que la mise à l'arrêt de la machine par détection de vent fort accompagné d'un freinage aérodynamique commandé par le système de contrôle.

- Concernant la projection de glace sera mise en place :

La fonction de sécurité n°1 : Prévenir la mise en mouvement de l'éolienne lors de la formation de glace à l'aide d'un système de détection ou de déduction de la formation de glace sur les pales de l'aérogénérateur. La procédure de redémarrage peut se faire soit automatiquement après disparition des conditions de givre, soit manuellement après inspection visuelle sur site

3. CONCLUSION

Ainsi, au vu des caractéristiques de chaque évènement redouté en termes d'intensité, de probabilité et de gravité, au vu des mesures mises en place par IEL Exploitation, les accidents majeurs identifiés les plus significatifs dans le cadre du projet de Ploumagoar sont <u>acceptables.</u>